Course Code:MATH325Course Title:Vector and Tensor AnalysisCredit Hours:(3 0 3)Pre-requisite(s):MATH212

Course Objectives:

The objectives of this course are:

- a) To learn about vector quantities and algebra of vector addition and multiplication.
- b) To understand differentiation and integration of vector valued functions and there applications.
- c) To learn about tensor quantities and algebra of tensor addition and multiplication.
- d) To understand differentiation of tensors fields.

Reading list:

1. D.E. Bourne , P.C Kendall , "Vector Analysis and Cartesian Tensors", 3rd edition,

Stanley Thornes, 1999.

- 2. G.D. Smith, "Vector Analysis", Oxford University Press, Oxford 1999.
- 3. M.R. Spiegel, "Vector Analysis & Introduction to Tensor Analysis", McGraw Hill,

New

York 2009.

- 4. M.R. Spiegel, "Vector Analysis", 2nd edition, McGraw Hill New York, 2009.
- 5. J.G. Simmonds, "A Brief on Tensor Analysis", Springer-Verlag, 2012.

Lecture #	Торіс
L1-L3	Introduction to the course ,Vectors , scalars ,Addition of vectors ,
	Multiplication of a vector by a scalar, Algebra of vector addition and scalar
	multiplication ,Unit vector ,Components of a vector ,Scalar and Vector fields,
	Tensors.
L4-L6	Dot Product and Cross product of vectors, Properties and applications of dot
	and Cross product.
L7-L8	Scalar and vector triple product ,Properties and applications of triple product
L9-L11	Derivatives of vector valued functions of scalar variable, Differentiation
	formulas Continuity and differentiability, Partial derivatives of vector functions
L12	Space curves ,unit tangent ,Principal normal , Bi-normal
L13-L15	Gradient, Divergence ,Curl , Formulas involving gradient, Divergence and
	Curl
L16-L18	Integration of vector valued functions, Line integral, Work done by a variable
	force, conservative vector field, scalar potential, Path independence ,Work
	done around a closed path
L19-L21	Surface integrals, Volume integrals, Limit of sum definition and evaluation
	technique
L22-L23	Transformation of coordinates, curvilinear coordinate, orthogonal curvilinear
	coordinate, Unit vectors in curvilinear systems
L24	MID EXAM

Lecture-wise distribution of the Contents

L25-L26	Contra-variant and covariant components of a vector, Gradient, Divergence and Curl in curvilinear coordinate system
L27-L29	Special orthogonal coordinate systems, Cylindrical Coordinate, spherical Coordinates, Parabolic Cylindrical Coordinates, Paraboloidal Coordinates
L30-L32	Co-vector, Scalar product of vector and co-vector, Linear operators, Bilinear and quadratic forms, Dual Bilinear forms, Einstein summation convention ,General definition of tensors.
L33-L35	Dot product and metric tensor, Tensors addition and multiplication by a scalar, Tensor product
L36-L38	Contraction, Kronecker symbol, Levi-Civita symbol, Tensor fields in Cartesian coordinates
L39-L41	Change of Cartesian coordinate system, Differentiation of tensor fields
L42-L44	Gradient, divergence, and curl, Laplace and d'Alambert operators
L45-L46	Tensor fields in curvilinear coordinate
L47-L48	Moving frame of curvilinear coordinates, Christoffel symbols